A veteran carpenter sorts through 10 of the latest engineered options BY GARY M. KATZ ot too long ago, the only material used for exterior trim was old-growth lumber—Douglas fir and redwood on the West Coast; yellow pine, white pine, and cedar on the East Coast; southern yellow pine and cypress in the South. Because of changes in forestry and the introduction of innovative materials, home builders and homeowners today have a host of trim products to choose from. All of these engineered-trim options promise to be decay resistant and easy to work with and to perform better than the new-growth lumber stocked at the lumberyard. However, each has its own unique properties that you need to understand before using it in the field. I first wrote about engineered trim 10 years ago for Fine Homebuilding, and a lot has changed since then. Many of the products I reviewed in that story are no longer available, while many others have changed so much that they no longer resemble the originals. It's time to take a fresh look at modern exterior trim in order to help you choose the right product for your next project. Gary M. Katz is a contributing editor. Photos by Rodney Diaz, except where noted. ### EXTERIOR TRIM AT A GLANCE #### **ACETYLATED** A process using acetic acid (concentrated vinegar) changes the wood fibers in the various species that are used so that their cells can no longer absorb moisture. This makes the wood dimensionally stable and indigestible, so it holds paint better and is more resistant to rot and insects. Unfortunately, acetylated wood is expensive, and availability is limited. Although the manufacturer says the smell dissipates, you may have to endure a strong odor if you have a lot of trim to install. The biggest benefit of Accoya is that it looks and handles like regular lumber. ### CELLULAR PVC (free foam) Most cellular-PVC trim is made using the so-called free-foam process, in which the material cools slowly as it leaves the injection die. Free-foam PVC is consistent throughout its thickness, and the inner core is smooth and has the same density as the outer skin. To minimize expansion caused by solar heating, PVC trim should be painted either with a lightcolored conventional paint with a lightreflectance value (LRV) of 55 or greater, or with a light-reflecting paint with an LRV of 40 or greater. Free-foam PVC should be securely fastened with screws and PVC-compatible construction adhesive. Joints should be glued with PVC cement. # CELLULAR PVC (celuka) As celuka PVC leaves the injection die, water cools the expanding foam, creating a PVC trimboard with a dense outer skin and a more granulated core. The manufacturer claims that this makes celuka PVC more dimensionally stable and more impact resistant than freefoam PVC. But because the core has a rough texture, celuka trim must be thoroughly sanded if the edges are profiled. Like free-foam PVC, celuka PVC is best fastened with screws and PVC-compatible construction adhesive. Joints are glued with PVC cement. When installing both types of PVC in cold weather (40°F or colder), leave 3/16-in. gaps at joints for warm-weather expansion. ### COMPOSITE MiraTEC is made from northern hardwood fibers collected from other milling operations and mixed with adhesive resins. The company adds a zinc-borate treatment for rot and insect resistance, and then the material is compressed under ultrahigh pressure, much like how OSB is made. But compared to OSB, the wood fibers that make up MiraTEC are far smaller, so you can create edge profiles and route patterns into the boards using standard woodworking machinery with carbide blades and bits. As with other wood-based products, miters are not recommended because seasonal changes in humidity cause them to open up over time. #### **FIBER CEMENT** Fiber-cement trimboards are made from a lower-density formulation of the same materials that make up fiber-cement siding (sand, cement, and cellulose fibers). Over the last 10 years, fiber-cement products have changed radically. New additives have reduced moisture absorption, and the addition of fiberglass has improved strength and durability. Fibercement boards cannot be routed or shaped, and they must be cut with carbide-tipped blades. Personal protective equipment and dust collection are a must because of the risks associated with breathing silica dust. Fiber-cement trim such as James Hardie's Color Plus provides a durable finish and eliminates on-site painting. ### **FINGER JOINTED** Finger-jointed boards are straight and free of knots as well as the coffee-colored stains caused by them. To get wider boards, some fingerjointed stock is also edge-glued. Fingerjointed exterior trim is made from eastern white pine, cedar, and imported radiata pine. For appearance, convenience, and dimensional stability, finger-jointed exterior trim is almost always coated with primer. The quality of the priming varies greatly from manufacturer to manufacturer. Look for boards manufactured with a thick coat of primer that sufficiently masks the finger joints. One example, Fortress FJ from Russin Lumber (made from western red cedar), undergoes a multistep priming process. # FINGER JOINTED (treated) Some finger-jointed trim includes organicbased treatments to protect the wood from insects and rot. These treatments also reduce the amount of moisture the wood can absorb, though not as effectively as acetylation. However, treated finger-jointed boards are much less expensive than acetylated stock. Like untreated fingerjointed stock, treated finger-jointed boards such as those from WindsorONE are easily shaped and routed on the iob site with ordinary woodworking tools. As with other wood-based trim products, you should avoid exterior miters because seasonal wood movement causes them to open. ### **FLY ASH** The most recent engineered-trim option is made from resin and fly ash, a waste product of coalgenerated electricity. According to Boral, currently the only manufacturer of fly-ash trim, its TruExterior trimboard doesn't absorb moisture and has no thermal expansion. Fly-ash trim is also impervious to insects and rot. TruExterior is cut and edge-profiled with standard woodworking tools and can be painted with any exterior-rated coating. The manufacturer claims that sawdust generated from cutting or milling fly-ash trim is no more carcinogenic than wood sawdust, and the fly ash used for making the boards is tested thoroughly for harmful contaminants. #### **OSB** LP is currently the only producer of trim made from OSB. Its SmartSide trimboards are made from compressed wood fibers and resin and are wrapped with a textured overlay that gives the boards the appearance of solid lumber, provides protection from the elements, and improves paint adhesion. The manufacturer further protects the boards with zinc borate, which improves its resistance to moisture, insects, and rot. OSB is one of the most affordable types of exterior trim, but it can't be routed or shaped like wood. In addition. OSB can't be mitered or laminated, and it is susceptible to swelling caused by moisture. #### **POLYURETHANE** Decorative architectural elements such as pediments, gable louvers, brackets, finials, and medallions made from polyurethane are common in residential construction. However, polyurethane boards aren't nearly as common because the material is more expensive than other options and is easily damaged by impact. Polyurethane expands and contracts less than other plasticbased options, and it has a smooth surface and crisp edges that make it a convincing stand-in for wood trim. Polyurethane trim is first bedded in polyurethane adhesive and then fastened with corrosion-resistant fasteners. ## HOW MODERN EXTERIOR TRIM STACKS UP | TIOW MODERN EXTERIOR TRIM STACKS OF | | | | | | | | | |-------------------------------------|--|---|--|----------------|---|--|--|--| | Trim
type | Brand
examples | Description | Warranty | Cost of 1x4x16 | Cutting
and milling | | | | | Acetylated | Accoya | Natural wood
treated with
acetic acid | 50-year limited
(above ground);
25-year limited
(ground contact) | \$60 | Machines and routs
well with a little
fuzzing using standard
carbide tools. Dust
collection is beneficial. | | | | | Cellular PVC
(free foam) | Azek, Kleer
Versatex | Free-foam
cellular PVC | Azek, 25-year limited;
Kleer, lifetime limited
on product, two years
on labor; Versatex,
30-year limited | \$26 | Machines and routs
very well with
standard carbide
tools. Dust collection
is beneficial. | | | | | Cellular PVC
(celuka) | Koma | Water-cooled
cellular PVC | 25-year limited | \$26 | Cuts with standard
carbide tools, but
machined edges are
rough. Dust collection
is beneficial. | | | | | Composite | MiraTEC | Compressed
hardwood fibers
protected with
borate-based
preservative | 50-year limited | \$15 | Machines and routs
well using standard
carbide tools. Dust
collection is beneficial. | | | | | Fiber
cement | HardieTrim,
CertainTeed
Trimboards | Primed fiber
cement with
additives for
reducing moisture
absorption and
improving strength | 15-year limited | \$19 | Cuts with specialty
carbide tools. Must
use dust collection. | | | | | Finger
jointed | Fortress FJ | Finger-jointed
primed western
red cedar | 15-year limited with
one factory coat
of Benjamin Moore
primer; 25-year limited
with two factory coats | \$20,
\$25 | Machines and routs
well with a little
fuzzing using standard
carbide tools. Dust
collection is beneficial. | | | | | Finger
jointed
(treated) | WindsorONE,
Bodyguard | Edge-glued and finger-jointed radiata pine protected with borate-based preservative | 30-year limited | \$17 | Machines and routs
well with a little
fuzzing using standard
carbide tools. Dust
collection is beneficial. | | | | | Fly ash | Boral
TruExterior | Fly ash and
adhesive with
fiberglass
reinforcement | 20-year limited | \$22 | Machines and routs
very well using
standard carbide
tools. Must use dust
collection. | | | | | OSB | LP
Smartside
Trim | Compressed
wood strands
protected with
zinc-borate
preservative | Five-year 100% on
material and labor;
50-year prorated | \$13 | Cuts with standard
carbide tools but does
not rout or machine.
Rips must be sealed.
Dust collection is
benefical. | | | | | Polyurethane | Fypon | Polyurethane
foam with primer | Lifetime limited | \$23 | Cuts with standard
tools but does not
rout or machine. End
cuts and exposed
interior turn yellow if
left unprimed. | | | | | Best uses | Movement | Prohibitions
and warnings | Fastening
requirements | Finishing requirements | Job-site
storage | |---|--|--|--|---|--| | High-visibility
projects where
unpainted natural
wood is part of the
design and is on
display | Moves 80%
less than
nonacetylated
wood of the
same species | Use with stainless-
steel flashing. Keep
6 in. above grade and
2 in. above roofing
materials. | Stainless-steel nails or
screws only. Use the same
nailing pattern as with
untreated wood. | Seal end cuts with
exterior primer or
clear sealer. | Elevate and
protect from
weather. | | Ideal for close-to-
grade applications.
Good for trim that
requires custom
edge treatment or
milling. | Expands in length with temperature. Securely fasten to restrict movement and prevent buckling. | Leave a ¾16-in. gap
at butt joints with
temperatures up to
40°F and a 1/16-in. gap
at temperatures from
80°F to 100°F. | 8d stainless ring-shank nails
or screws. Use PVC cement
for gluing joints. Use PVC-
compatible adhesive to bond
PVC to wood. | 100% acrylic paint
with a urethane
additive and
medium to high LRV
(over 55%) | Store out of
direct sun, and
keep at ambient
temperature
during
installation. | | Ideal for close-to-
grade applications
but not edge
profiling. More
impact resistant
than free-foam PVC. | Expands in length with temperature. Securely fasten to restrict movement and prevent buckling. | Leave a ¾16-in. gap at butt joints with temperatures up to 40°F and a 1/16-in. gap at temperatures from 80°F to 100°F. | 8d stainless ring-shank nails
or screws. Use PVC cement
for gluing joints. Use PVC-
compatible adhesive to bond
PVC to wood. | 100% acrylic paint
with a urethane
additive and
medium to high LRV
(over 55%) | Store out of
direct sun, and
keep at ambient
temperature
during
installation. | | Avoid close-to-
grade locations
and areas subject
to regular wetting. | Minimal
expansion | Keep 6 in. above grade, 1 in. above roofing materials, ½ in. above concrete, and ¼ in. above flashings. | 6d or 8d 16-ga. corrosion-
resistant finish nails or headed
nails. Nails must penetrate
1¼ in. into framing. Bond
with waterproof wood glue. | Prime end cuts,
then coat with high-
quality oil or acrylic-
latex primer. Paint
with acrylic latex. | Elevate and
protect from
weather. | | Impervious to
insect damage.
Unaffected by heat
and direct sun. | Minimal
expansion | Maintain ¼-in. space
between wall flashing
and siding materials
and 2-in. space above
decks, paths, steps,
driveways, and roofs. | Stainless-steel finish nails
(except for fascia installations
without subfascia, which
should be nailed directly
to rafter ends with 6d
siding nails) | Don't use stain
or oil- or alkyd-
based paint. 100%
acrylic topcoats are
recommended. | Elevate and
protect from
weather. | | Minimal exposure
to rain or
splashback.
Good for custom
dimensions and
profiles. | 1% increase
across the
grain for every
4% increase in
moisture content | Keep 8 in. above grade
and 2 in. above decks
and roofs. | Don't use finish nails. Use ring-
shank or splitless stainless-
steel or HDG siding nails or
screws. Countersunk nails
must be sealed and filled. | Prime all field cuts.
Apply two coats of
100% acrylic solid-
color stain or paint. | Elevate and
protect from
weather. | | Greater exposure to
water and insects
than untreated.
Good for custom
dimensions and
profiles. | 1% increase
across the
grain for every
4% increase in
moisture content | Do not use for railings
or trellises. Moisture
content must be below
18%. Keep 8 in. above
grade and 2 in. above
decks and roofs. | Don't use finish nails. Use ring-
shank or splitless stainless-
steel or HDG siding nails or
screws. Countersunk nails
must be sealed and filled. | Prime all field cuts.
Apply two coats of
100% acrylic-latex
exterior paint. | Elevate and
protect from
weather. | | Ideal for close-to-
grade applications | Minimal
expansion | Approved for ground contact | Stainless-steel or galvanized
finish nails 24 in. on center | Oil or latex paint | Keep level and
protected from
weather. | | Projects with tight
budgets. Cut
edges should be
hidden, as they
look unfinished. | Minimal
expansion | Leave a ¾16-in. gap
between other materials
and at joints for
sealing. Leave a similar
gap between siding,
windows, and doors. | 8d HDG siding nails 24 in.
on center. Maintain 1-in.
penetration into framing.
Countersinking requires
sealant and possible
additional nailing. | Use high-quality
acrylic-latex paint.
Semigloss or satin
oil or alkyd paints
are also acceptable. | Elevate and
protect from
weather. | | Avoid locations
where it will be
damaged by string
trimmers or impact. | Allow ³ /16 in.
per 18 ft. for
expansion and
contraction. | Avoid high heat, and allow material to acclimate to ambient temperature before installation. | Bed material in a bead of
polyurethane adhesive, and
use corrosion-resistant nails
and screws. Use polyurethane
adhesive on all joints. | Fill large holes with
auto-body filler. Fill
small holes with
exterior spackle.
Paint with acrylic-
latex. | Store on a flat,
level surface in a
cool area out of
extreme heat. | www.finehomebuilding.com AUGUST/SEPTEMBER 2015 65